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Transverse stability of the one-dimensional kink solution of the discrete Cahn-Hilliard equation

David Bettinson and George Rowlands
Department of Physics, University of Warwick, Coventry CV4 7AL, England

~Received 27 May 1997!

We give an analysis of a discrete version of the Cahn-Hilliard equation, which admits a one-dimensional
kink solution. The stability of such a kink solution to perpendicular perturbations is analyzed using an
asymptotic matching method as used by Bettinson and Rowlands@Phys. Rev. E54, 6102~1996!# and a Green’s
function technique similar to that used by Shinozaki and Oono@Phys. Rev. E47, 804 ~1993!#. The kink is
found to be stable in both cases, but we find that the two methods do not agree, at first order in the growth rate,
for perturbations of wave number close tok52pp ~wherep is some integer!. Reasons for this disagreement
and why the method given by Bettinson and Rowlands leads to the correct result are given. We then use
equations derived in by Bettinson and Rowlands to compare stability results to those obtained for the continu-
ous version of the equation. We also analyze the stability to perturbations of wave number close tok5(2p
11)p and finally, using a Pade´ approximant, we give an expression for the growth rate of perturbations of all
wavelengths. Our results quantify the difference between the continuum and discrete cases.
@S1063-651X~98!02901-8#

PACS number~s!: 64.60.2i, 02.90.1p, 02.30.Mv
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I. INTRODUCTION

The continuous Cahn-Hilliard equation@1# has been used
extensively to describe pattern formation resulting from
phase transition. Such decomposition has been observe
two-component systems such as alloys and glasses, w
the phase transition is induced by rapidly quenching the s
tem to below some critical temperature. For more phys
background, derivation, and discussion see@2–4#. In @3# it is
shown that to describe certain systems the wavelength o
decomposition is at the nanometer scale. This is too smal
the continuum approximations of the Cahn-Hilliard equat
to apply and it is shown that this approach fails to descr
the kinetics of the experimentally observed decompositi
We use this as motivation for studying a discrete version
the Cahn-Hilliard equation, which we write in the form

]un,m

]t
5¹2FdF

du
~un,m!2¹2un,mG , ~1!

where un,m is the concentration parameter at the (n,m)th
point of a two-dimensional lattice, and

¹2un,m5@un11,m1un21,m22un,m#

1q2@un,m111un,m2122un,m#, ~2!

whereq is an anisotropy factor. We are interested in gene
perturbations that are perpendicular to then direction, but a
simple rotation of the perpendicular axes will turn such
problem into one that can be performed on a tw
dimensional lattice. Equations such as Eq.~1! arise naturally
in solid-state physics where the lattice is the atomic latti
In @5#, Eq. ~1! was derived and analyzed for the early-tim
behavior described by linear perturbations to the homo
neous solution. The homogeneous solution was shown t
unstable. Of course nonlinear effects will introduce so
form of saturation mechanism to this instability and, by an
ogy with many quite diverse systems in physics, chemis
571063-651X/98/57~1!/169~10!/$15.00
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and biology~see, for example,@6# and references therein!,
will lead to a regular spatial pattern formation. We conje
ture that this pattern can be described by an array of ki
type solutions. Thus in this paper, as a first step in a stud
the possible existence of kink-type solutions, we study th
linear stability.

We first look for one-dimensional stationary solutions
Eq. ~1! and thus require solutions to

D ū n2F8~ ū n!50, ~3!

where Dun5un111un2122un . Unfortunately, unlike the
analogous continuous problem, there are no general meth
such as phase plane analysis, to show the existence of
odic or kinklike solutions. We use a potential that is know
to admit a stationary kink solution~see@7#!, namely

F~u!512
a

2
2u22

a

2
lnS 2

a
~12u2! D , ~4!

wherea is some constant. This function has the advanta
that it imposes the restriction 1>u>21, whereas ifF5(1
2u2)2/4, a commonly used form of the potential in studi
of the Cahn-Hilliard equation, there is no such restrictio
This latter case is unphysical becauseu is the percentage
concentration of one of the two components and henceuuu
<1. It is shown in@7# that Eq.~3!, along with the potential
given by Eq.~4!, admits a kink solution of the form

ū n5tanhbtanh~nb1s!, ~5!

wherea52 sech2b ands is an arbitrary phase. This poten
tial F is plotted in Fig. 1. The exact form ofF depends on
the value ofa taken, but we note that the two minima a
always atu56tanhb56A12a/2.
169 © 1998 The American Physical Society
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170 57DAVID BETTINSON AND GEORGE ROWLANDS
A. Discrete to continuous equation

In this subsection we consider differences between
continuous and discrete kink. The continuous Cahn-Hillia
equation can be obtained from Eq.~1! in the limit as the
variation of un,m with n and m is slow compared to the
underlying lattice spacing and is obtained by replacing
operator¹2 in Eq. ~2! by ]2/]x21q2]2/]y2. To look for
stationary, one-dimensional solutions we must solve

S d ū

dx
D 2

522a22 ū22a lnS 2

a
~12 ū2! D . ~6!

We were unable to integrate this analytically, and so it h
been solved numerically. The numerical solution is th
compared to the analytical solution in the discrete c
@given by Eq.~5! with s50 andn5x#. The maximum error
is found to be whenx50, which is confirmed if we conside
Fig. 2. The maximum error is whenū50, which since we
are concerned with the kink solution, is whenx50. The
maximum error in the approximate solution is plotted, f
various values ofb, in Fig. 3. For largerb, asx→6`, the
value of ū (x) becomes closer to61 and the kink become
taller and steeper. This change in the shape of the statio
kink solution coincides with an increase in the error betwe
the approximate~discrete! solution and the solution of Eq
~6!. Thus, in conclusion, we see that the discrete and c
tinuous forms are in good agreement for sufficiently smallb.

FIG. 1. Form of the potentialF(u).

FIG. 2. Phase plane contours. Solid line, the continuous c
Eq. ~6!; dashed line, the approximate solution given by Eq.~5!.
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B. Perturbing the kink solution

The remainder of this paper is devoted to asking whet
such kink solutions can be observed in practice. To be
servable it is necessary that small perturbations to the k
decay in time. To perturb a kink solution we writeun,m

5 ū n1dun,megt and substitute this into Eq.~1!. Neglecting
products ofdun,m , we obtain

gdun,m5¹2Fd2F

du2 ~ ū n!2¹2Gdun,m . ~7!

Making use of the fact that the coefficients ofdun,m in Eq.
~7! are independent ofm we may writedun,m5fneikm and
thenfn satisfies

2gfn5~D2a2!@D2a22F9~ ū n!#fn , ~8!

with a52qsin(k/2) @in a truly three-dimensional problem w
havea254q1

2sin2(k1 /2)14q2
2sin2(k2 /2), whereq1 andq2 are

the anisotropy factors andk1 ,k2 the wave numbers in the
transverse directions#.

Note that if we differentiate Eq.~3! with respect to the
phases we obtain

L
] ū n

]s
50, ~9!

whereL5D2F9( ū n). Comparing this with Eq.~8! shows
that a solution fn5] ū n /]s exists when a50 ~i.e., k
52pp) and g50, that is, a marginally stable solution. I
the continuous case, this marginally stable mode arises
rectly from the spatial invariance of the governing equatio
In the discrete case the time-independent solutionū n is ar-
bitrary up to a phase factor and the requirement of spa
invariance is replaced by one of phase invariance. In the n
two sections we introduce two distinct methods to study
solutions of Eq.~8! and in particular the variation of the
growth rateg with a2.

II. ASYMPTOTIC MATCHING METHOD

To solve the discrete linear equation~8! we extend a
method, introduced in@8# and discussed in detail by Bettin
son and Rowlands~BR! in Ref. @2#. The method is based o
e,

FIG. 3. Error between the approximate solution and the num
cally calculated solution to Eq.~6!, for various values ofb.
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57 171TRANSVERSE STABILITY OF THE ONE-DIMENSIONAL . . .
the fact that the correct asymptotic behavior of a solution
Eq. ~8! must satisfy the form of this equation in the lim
unu→`. In this limit the equation has constant coefficien
and so is easily solvable. Thus we begin by considering
linear equation in the limit asn→`. To do this we must
know the asymptotic behavior ofF9. From Eq.~4!, it can be
shown that if we ignore all exponentially decaying terms

lim
n→`

d2F

dun
2 ~ ū n!5241

8

a
54sinh2b5K. ~10!

Thus, in this same limit, Eq.~8! becomes

@~D2a2!22K~D2a2!1g#f̄n50, ~11!

where f̄n5 limn→`fn . We assume solutions of the form
f̄n5eln and find that

~el1e2l222a2!5
1

2
~K6AK224g!. ~12!

For a and g small and for the positive square root in E
~12!, the asymptotic form of the eigenfunction decays on
fast scale, that isf̄n;e22bn, while with the negative squar
root we find a slow variation that can be represented a
polynomial inn. Thus, for the slow variation we have

el512a1a2S 1

2
2

g3

2K D1O~a3! ~13!

and

f̄n5Aenl5AF12na1a2S n2

2
2

ng3

2K D1O~a3!G , ~14!

which is equivalent to Eq.~A4! in @2#. In Eq. ~14!, A is an
arbitrary normalization constant and we have takeng
5a3g3 since, as we show below, this is the form for smalla.

The basis of BR’s method is to remove any fast grow
terms using a consistency condition and then to match
solution with the asymptotic form given by Eq.~14!. To do
this we consider the linear equation~8! for small a, by ex-
panding the variables ina, namely,

g5g1a1g2a21g3a31•••,

fn5sech2~nb!1fn,1a1fn,2a
21•••. ~15!

To first order ina, Eq. ~8! is

DLfn,152g1fn,0 . ~16!

Let Lfn,15xn and note that sincefn,0 is symmetric about
n50 andD is a symmetry preserving operator, thenxn is
symmetric aboutn50. Thus we write Eq.~16! as

2g1fn,05Dxn5xn111xn2122xn5Pn112Pn ,
~17!

wherePn115xn112xn . This equation is readily solved b
iteration to give
o

e

a

a

e

Pn115P02g1(
j 50

n

f j ,0 , ~18!

whereP0 is an arbitrary constant. Similarly,

xn115xn1P02g1(
j 50

n

f j ,0

5x01~n11!P02g1(
l 50

n

(
j 50

l

f j ,0

5x01~n11!P02g1(
j 50

n

~n112 j !f j ,0 , ~19!

which is true for n>0. Now we know thatPn115xn11
2xn and so

P15x12x0 ,

P05x02x21 . ~20!

Sincexn is symmetric aboutn50, this last result givesP0
52P1. Thus, from Eq.~18! we see that

P05
g1

2
. ~21!

Using this result and Eq.~19! we find that

Lfn,15xn5c11
ng1

2
2g1(

j 50

n21

~n2 j !f j ,0 ~22!

for n>1 and

Lf0,15x05c1 ~23!

for n50 ~note that we have replacedx0 by c1).
In Appendix A, it is shown that the operatorL is symmet-

ric, and from this follows a consistency condition that wh
applied to Eq.~22! shows thatc15 ĉ1g1, whereĉ1 is some
constant. Inserting this result into Eq.~22! gives

Lfn,15g1F ĉ11
n

2
2 (

j 50

n21

~n2 j !f j ,0G . ~24!

Using the asymptotic form as given by Eq.~14!, sincef̄n,0

50, then f̄n,1 must at most be a constant. To satisfy th
condition we must haveg150, leaving

Lfn,150, ~25!

which implies thatfn,15A1fn,0 , where A1 is some con-
stant.

To second order ina, Eq. ~8! becomes

D~Lfn,22fn,0!52g2fn,0 , ~26!

and using the results obtained at first order we find that
simplifies to
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172 57DAVID BETTINSON AND GEORGE ROWLANDS
Lfn,25c21fn,01
g2n

2
2g2(

j 50

n21

~n2 j !f j ,0 ~27!

for n>1 and

Lf0,25c211 ~28!

for n50. Using a similar argument to that used to dedu
g150 shows thatg250 and thus

Lfn,25c21fn,0 ~29!

for all n. Applying the consistency condition to Eq.~29!, we
find thatc252I 2 /I 1, where

I 15 (
n52`

`

fn,0 ,

I 25 (
n52`

`

fn,0
2 , ~30!

and so Eq.~29! becomes

Lfn,25fn,02
I 2

I 1
. ~31!

As n→` it is found, using Eq.~31!, that ~neglecting expo-
nentially decaying terms!

f̄n,25
I 2

KI 1
, ~32!

which has the same form as Eq.~20! in @2#. To third order in
a, Eq. ~8! is

D~Lfn,32fn,1!52g3fn,0 , ~33!

from which we find that

Lfn,35c31fn,11
g3unu

2
2g3(

j 50

n21

~n2 j !f j ,0 ~34!

for n>0 and

Lf0,35c31A1 ~35!

for n50. Note that in Eq.~34! we have an absolute value o
n since, as we have already stated,x ~or hereLfn,32fn,1) is
symmetric aboutn50. Applying the consistency conditio
to this equation, we find that

c35
g3~ I 32I 4!2A1I 2

I 1
, ~36!

whereI 1 ,I 2 are given above and

I 352(
n51

`

fn,0(
j 50

n21

~n2 j !f j ,0 ,

I 45 (
n51

`

nfn,0 . ~37!
e

Now asn→`, we write Eq.~34! as

~D2K !f̄n,35c31
g3n

2
2g3(

j 50

`

nf j ,01g3(
j 50

`

j f j ,0

5c31g3I 42
g3I 1

2
n. ~38!

Thus the asymptotic form of the solution to third order ina
is given by

f̄n,352
c3

K
2

g3I 4

K
1

g3I 1

2K
n, ~39!

which is equivalent to Eq.~25! in @2#. If we combine this
result with that given by Eq.~32! we can write

f̄n}11
g3I 1

2

2I 2
na1O~a2!. ~40!

A comparison of this result with that given by Eq.~14!
shows that

g352
2I 2

I 1
2 , ~41!

which is equivalent to Eq.~27! in @2#. For small b, it is
shown in Appendix B that these sums are well approxima
by their integrals, in which caseg3522b/3. We show later,
in this limit, how the value ofg3 is the same for both the
discrete and continuous cases.

To fourth order ina, Eq. ~8! is

D~Lfn,42fn,2!52
I 2

I 1
2~g41A1g3!fn,0 . ~42!

From this it can be shown that the equivalent result to E
~21! to first order is

P05
I 2

2I 1
1

1

2
~g41A1g3!, ~43!

so Eq.~42! becomes

Lfn,42fn,25
unu
2

~g41A1g3!1c4

2~g41A1g3! (
j 50

n21

~n2 j !f j ,02
I 2

2I 1
n2,

~44!

where we have used the relationship

(
j 50

n

~ j 11!5S n

2
11D ~n11!. ~45!

Now asn→`, Eq. ~44! becomes
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57 173TRANSVERSE STABILITY OF THE ONE-DIMENSIONAL . . .
~D2K !f̄n,45 ĉ41~g41A1g3!S 1

2
2(

j 50

`

f j ,0D n2
I 2

2I 1
n2

5 ĉ42~g41A1g3!
I 1

2
n2

I 2

2I 1
n2 ~46!

and thus

f̄n,452
ĉ4

K
1

I 1

2K
~g41A1g3!n1

I 2

2I 1K
n2, ~47!

which is equivalent to Eq.~30! in @2#. We now combine Eqs
~32!, ~36!, ~39!, ~41!, and~47! to give

f̄n}12an1a2S g4I 1
2n

2I 2
1

2I 3n

I 1
2 2

2I 4n

I 1
2 1

2I 4n

I 1
1

n2

2 D
1O~a3!, ~48!

and comparing this to Eq.~14! we find that

g452
4I 2

I 1
4 F I 32I 41I 1I 42

I 2

2K G , ~49!

which is equivalent to Eq.~36! in @2#. Thus we can now
write

g52
2I 2

I 1
2 a32

4I 2

I 1
4 F I 32I 41I 1I 42

I 2

2K Ga41O~a5!

~50!

for small a.
We can now compare the results obtained for the disc

case to those obtained for the continuous Cahn-Hilli
equation. The difference between the discrete and continu
equations, both given by Eq.~1!, is purely within the opera-
tor ¹2. For the discrete equation¹2 is as defined in Eq.~2!
of the present paper and for the continuous case it is take
be the Laplacian operator. For the continuous case we
Eq. ~27! and Eq.~36! of @2# where the stability is analyze
for a general potential. Using these equations with the po
tial F given by Eq.~4! anda5k, it is shown that

g352
Î 2

22a
,

g45212
Î 1Î 2

~22a!2
1

a Î 2
2

8~22a!3
1

Î 2Î 3

~22a!
, ~51!

where theÎ i ’s are definite integrals given by
te
d
us

to
se

n-

Î 152E
0

A12a/2F u0SA12
a

2
2u0D

A2F~u0!
G du0 ,

Î 25E
2A12a/2

A12a/2
A2F~u0!du0 ,

Î 35
1

KA22a
E

0

A12a/2F Ku02A12
a

2
F9~u0!

AF~u0!
G du0 .

~52!

These integrals, along with the results from the discr
analysis, are evaluated numerically for a range ofb, and
plotted in Fig. 4, and those lines labeled with ana in Fig. 5.
These figures are the main results of our work as they sh
the similarities and differences between the solution of
continuous and discrete versions of the Cahn-Hilliard eq
tion.

The expressions given forg3 in the discrete regime@Eq.
~41!# and that in the continuous case@Eq. ~51!# are easily
analyzed forb→`. It can be shown that

lim
b→`

I 15 lim
b→`

I 251 ~53!

FIG. 4. Growth rate variableg3 as a function ofb. Solid line,
continuous equation~51!; short-dashed line, discrete equation~41!.

FIG. 5. Growth rate variableg4 againstb. a, result obtained
using the asymptotic matching method;b, result obtained using the
Green’s-function method. Solid line, continuous equation; das
line, discrete equation.
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174 57DAVID BETTINSON AND GEORGE ROWLANDS
and so in the discrete case

lim
b→`

g3522. ~54!

For the continuous case it can be shown that

lim
b→`

Î 25
p

A2
~55!

and so

lim
b→`

g352
p

2A2
.21.11. ~56!

These asymptotic forms are shown as long-dashed line
Fig. 4.

This behavior is somewhat different from the time evo
tion of the unstable homogeneous solutionū n50. Equation
~7! still describes the time evolution, but now wit
d2F( ū n)/du2522tanh2b, from which it is simple to show
that

g5a2~2tanh2b2a2!, ~57!

where a52sin(k/2) for the discrete equation anda5k for
the continuous equation. Thus, for smallk the relationship
betweeng and the parameterb is the same for both the
discrete and continuous equations. This is different from
decay rates of small-k perturbations to the kink solution a
shown in Fig. 4. There we see that the decay rates differ f
the discrete and continuous versions of the equation.
suggest that, for finite values ofb, this decay rate difference
is due the kink solution to the discrete equation being diff
ent to the kink solution in the continuous case, whereas
homogeneous solution is the same in both cases.

III. GREEN’S-FUNCTION METHOD

In Sec. II a method was developed to solve the eigenva
equation~8! and giveg as a power series ina. It would be
advantageous if a simpler method were available. T
Green’s-function method, introduced by Shinozaki and Oo
in @9# to study the continuous case, is in fact simpler than
method of BR. In this section we apply this method to t
discrete case and show that it gives an identical value forg3,
but as in the continuous case, it gives an incorrect value
g4.

As in @9#, we look for solutions to Eq.~8! for smalla ~i.e.,
k'2pp). Formally, we introduce the Green’s function fo
D2a2 and rewrite Eq.~8! in the form

~L2a2!fn52g (
n852`

`

G~n;n8!fn8. ~58!

In Appendix C we show that the Green’s function forD
2a2 can, for smalla, be written in the form

G~n;n8!52
1

2a
1

un2n8u
2

1aS 1

16
2

~n2n8!2

4 D1O~a2!.

~59!
in

-

e

m
e

-
e

e

e
o
e

or

Using this, Eq.~58! becomes

~L2a2!fn5
g

2a (
n852`

`

fn82
g

2 (
n852`

`

un2n8ufn8

2ag (
n852`

` S 1

16
2

~n2n8!2

4 Dfn8. ~60!

We perform a small-a expansion upon the variables, as
Eq. ~15!, and to zeroth order ina, Eq. ~60! becomes

g1

2 (
n852`

`

fn8,05Lfn,050 ~61!

and sog150. To first order ina, Eq. ~60! becomes

g2

2 (
n852`

`

fn8,05Lfn,1 . ~62!

Using the consistency condition as developed in Appen
A, we find thatg250, which implies that Eq.~62! is now
Lfn,150, from which we findfn,15A1fn,0 . To second or-
der in a, Eq. ~60! becomes

g3

2 (
n852`

`

fn8,05Lfn,22fn,0 ~63!

and now the consistency condition gives

g352
2I 2

I 1
2 , ~64!

which is equivalent to Eq.~41! found using the asymptotic
matching method. To third order ina, Eq. ~60! becomes

1

2
~A1g31g4!I 12

g3

2 (
n852`

`

un2n8ufn8,05Lfn,32fn,1 .

~65!

In this case the consistency condition gives

g452
2I 2

I 1
4 (

n52`

`

fn,0 (
n852`

`

un2n8ufn8,0 ~66!

and using Eq.~D1! in Appendix D we see that

g452
4I 2

I 1
4 ~ I 32I 41I 1I 4!. ~67!

A comparison of this equation to that given by Eq.~49! in
Sec. II shows that here the potentialF, through the terms
involving K, has played no part in the value ofg4. In @2#, the
continuous linear Cahn-Hilliard equation with a different p
tential was studied. The asymptotic method gave a va
g45211/18, whereas the Green’s-function method ga
g4522/3. The 1/18 difference was again simply the cont
bution from the potentialF. Thus we conclude that the
Green’s-function method gives the correct form forg3, but
misses a contribution tog4 that depends explicitly on the
detailed form of the potential.
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We can now consider Figs. 4 and 5, where all results
shown. Forg3, since both methods give the same answ
there are only two distinct curves~one for each of the con
tinuous and discrete cases!, whereas forg4 the Green’s-
function method always overestimates the decay rate an
there are four different curves. Note that for bothg3 andg4,
asb→0, the difference between the continuous and disc
answers tends to zero.

We have shown that the Green’s function method is
quicker way to obtain stability results:g3 and g4 are ob-
tained one order earlier than when using the asympt
method. However, there is disagreement between the va
of g4 given by each method. This we have shown is due
the potential affecting the asymptotic result, but not t
Green’s-function result at ordera4.

In @8# it is shown that to determineg it is not sufficient
just to remove exponentially secular terms as this leads to
wrong asymptotic form for the eigenfunction. It was show
that simply removing exponentially secular terms leads
the correct answer to lowest order, but breaks down at hig
orders. Using the consistency condition, as in the Gree
function approach, actually removes exponentially secu
terms and so will only give the correct value ofg to lowest
order~i.e.,g3). Thus we conclude that the method of using
Green’s function together with a consistency condition
determineg at anything other than lowest order is incorre
from which we conclude that the results given by Eq.~67!
above and~3.10! of @9# are wrong.

IV. NUMERICAL SOLUTION OF THE DISCRETE
EQUATION

In this section we present results from numerical calcu
tions of solutions to the discrete linear equation, namely,
~8!. These are performed using asymptotic knowledge of
solution to Eq. ~11!. It can be shown that the gener
bounded solutionfn is such that

lim
n→`

fn5f̄n}Fb1

2
2

1

2
Ab1

2 24Gn

1cFb2

2
2

1

2
Ab2

2 24Gn

,

~68!

where

b65F21a21
1

2
~K6AK224g!G ~69!

with the constantK given by Eq.~10!. The relative ampli-
tude of the two modes of decay inf̄n is unknown and the
constantc reflects this. Thus, for each value ofa, at a par-
ticular value ofb, we have two unknown quantitiesg andc.
A particular solution is found by choosingg andc, using Eq.
~68! as the solution for largen ~we find thatn570 is suffi-
cient!, and then iterating backward using Eq.~8!.

We now note that in the analysis of Eq.~8! we have
considered a symmetric eigenfunction. We develop a fu
tion to measure the symmetry of our numerically calcula
eigenfunction. The absolute percentage error betweenfn and
f2n is found for 1<n<30, and these values are the
summed. The final answer is used as a measure of the
re
r,

so

te

a

ic
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o
e
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o
er
s-
r

,

-
q.
e
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d
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error. We now varyg andc in order to determine the mini
mum of this error function and thus findg.

In Fig. 6 we show, forb50.1, the percentage erro
100(g2ga)/g, where ga is the value derived using ou
asymptotic method@given by Eq.~50!#, and the percentage
error 100(g2gg)/g, wheregg is the value derived using th
Green’s-function method@given by Eqs. ~64! and ~67!#.
Clearly, asa gets larger, the absence of thea5 term will
influence our analytical results,but for small a, we see that
ga is much closer to the numerically calculated value ofg.
The short-dashed line is the percentage error ofgg , calcu-
lated for small a, if we assume thatg5ga , namely,
100(gg,42ga,4)a/g3. Clearly the two error curves forgg are
in agreement, vindicating our assumption thatg5ga for
small a.

V. LARGE- a ANALYSIS

Now sincea52sin(k/2), thenuau has a maximum value o
two whenk5p(112p), with p being any integer. Unlike
the continuum case wherea is justk and can take arbitrarily
large values, herea is bounded. However, we assume
large-a expansion in analogy with the results given in@2#.
Taking the dominant terms of Eq.~8!, we find that

2gfn5a4fn , ~70!

which implies that to leading orderg52a4. As in Eqs.~44!
and ~45! of @2#, we now scale the variables in 1/a, thus

fn5fn,a1
1

a
fn,b1

1

a2 fn,c1•••,

g52a41gaa31gba21•••. ~71!

To ordera3 we find thatga50. To ordera2 we find that

FD2
1

2
@F9~ ū n!1gb#Gfn,a50 ~72!

is the equation to be solved. In principle this can be done
give gb , leaving

FIG. 6. Percentage error in the analytically calculated grow
rates forb50.1 and various values ofa. Long-dashed line,g cal-
culated using the asymptotic method; solid line,g calculated using
the Green’s-function method; short-dashed line, 100(gg,4

2ga,4)a/g3.
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g52a41gba21•••. ~73!

Thus, to lowest order, for largea, g52a4, and so ifa52,
to lowest orderg5216. Also, sincea is periodic ink we
find that the growth rate of the kink solution is periodi
being marginally stable whenk52pp (p is some integer!
and stable elsewhere.

VI. PADÉ APPROXIMATION TO THE GROWTH RATE

Since we now have approximations to the growth rate
small and largea, we use a Pade´ approximation for alla ~as
done in@2#!. We assume the form of the growth rate to
given by

gp5
b0a3~11b1a1b2a2!

11b3a
, ~74!

where thebi are constants to be determined by our sm
and large-a approximations to the growth rate. For smalla
we can write Eq.~74! as

gp5b0a31b0~b12b3!a41O~a5!. ~75!

Similarly, for largea we can write Eq.~74! as

gp5
b0b2

b3
a41

b0

b3
S b12

b2

b3
Da31O~a2!. ~76!

A comparison of Eq.~75! to Eq.~50! and Eq.~76! to Eq.~73!
will tell us the values of thebi from which we can write Eq.
~74! as

gp5
a3g3

2

@g32~11g4!a#
2a4, ~77!

wherea52usin(k/2)u. This form forgp is plotted in Fig. 7 as
a function ofk.

VII. CONCLUSIONS

There are three main points that arise from this paper.
first is related to the transverse stability of the discrete Ca
Hilliard equation, the second relates to a flaw found wh
using a consistency condition, and finally we compare
findings with those of other authors who have considered
time evolution of discrete equations.

FIG. 7. Pade´ approximation to the growth rate given in Eq.~77!.
r

-

e
n-
n
r
e

In this paper the transverse stability of a discrete equa
is studied and it is shown that the discrete Cahn-Hillia
equation is, as with its continuous counterpart, stable
transverse perturbations. As the parameterb→0 the decay
rate of perturbations decreases and the discrete answer
verges to that obtained in the continuous case. For finitb
the continuous case underestimates this decay rate. We
analyzed only one particular potential, but as found in@2#,
we expect the stability results to differ only quantitatively f
different potentials. Importantly, the form forg given by Eq.
~50! is applicable for all potentials that admit kink solution
with the detailed form of the kink only needed to evalua
the sumsI n . To lowest order, it is found that taller, steep
kink solutions are more stable.

In analyzing this equation, we have found important d
crepancies in a commonly used method for determining
stability of fourth-order equations. The Green’s-functio
method, as we have called it, appears to take no accoun
the particular potential and, as we have shown, gives an
correct value to the first order correction to the decay rate
small a.

In @3# it was pointed out that the derivation of the discre
Cahn-Hilliard equation depends on a gradient expansion
the free energy. The approximation used rejects all hi
order terms, thus limiting the validity of the equation to rel
tively smooth solutions. In@3# it is shown numerically, for
three different models of phase separation~one of which is
the continuous Cahn-Hilliard equation!, that the system un-
der consideration always evolved to the same final state
that the time scales of evolution were model depende
Similarly, we have shown that differences between the d
crete and continuous Cahn-Hilliard equations are only qu
titative, namely, the kink solution is stable but the decay r
does differ between the two cases. This means that the
time for the evolution of an unstable homogeneous ini
state to a kink or array of kinks differs depending on wheth
one uses the discrete or continuum model. The results g
in this paper can be used to give estimates of the differen
in this time.
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APPENDIX A: SYMMETRIC OPERATOR

Here we show thatL5D2F9( ū n) is a symmetric opera-
tor. Consider the equation

I 5 (
n52`

`

cnLfn , ~A1!

where cn is an arbitrary function that tends to zero
n→6`. Then
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I 5 (
n52`

`

cn@D2F9~ ū n!#fn

5 (
n52`

`

cn@fn111fn2122fn2F9~ ū n!fn#

5 (
n52`

`

fn@cn111cn2122cn2F9~ ū n!cn#

5 (
n52`

`

fnLcn , ~A2!

so that

(
n52`

`

cnLfn5 (
n52`

`

fnLcn ~A3!

for arbitrary cn , which proves thatL is symmetric. Using
this result, we can obtain a consistency condition t
bounded solutions exist for any equation of the form

Lfn5Sn . ~A4!

First multiply byfn,0 and sum over alln. Now use the result
thatL is symmetric,Lfn,0[0, and the consistency conditio

(
n52`

`

fn,0 Sn50 ~A5!

follows.

APPENDIX B: EVALUATION OF CERTAIN INFINITE
SUMMATIONS

The original seriesI 1 and I 2 @Eq. ~30!# give convergent
results forb→`. Here we find a series representation app
priate for b→0. For this we use the Poisson sum formu
~see@10#, p. 466!, which states that

(
n52`

`

f ~an!5
A2p

a (
m52`

`

FS 2mp

a D , ~B1!

whereF is the Fourier transform off ,

F~k!5
1

A2p
E

2`

`

f ~x!eikxdx. ~B2!

Now I 15(n52`
` sech2(nb) and so using Eq.~B1! we can

say

I 15
A2p

b (
m52`

`

FS 2mp

b D , ~B3!

where

F~x!5
1

A2p
E

2`

` cosxt

cosh2t
dt. ~B4!
t

-

Note that the function cosxt/cosh2t has poles whent5 ip(1
12p)/2, wherep50,1,2, . . . . Tosolve the integral we use
complex integration. The contour chosen is that in Fig. 8.
Cauchy’s theorem

R
c

cosxt

cosh2t
dt52p i( ~residues!. ~B5!

The residue of the function cosxt/cosh2t about ip/2 is
ixsinh(px/2). Using Eq.~B5!, we find that

E
2`

` cosxt

cosh2t
dt2coshpxE

2`

` cosxt

cosh2t
dt52p i S ixsinh

px

2 D ,

~B6!

so that

E
2`

` cosxt

cosh2t
dt5

px

sinh
px

2

~B7!

and thus

FS 2mp

b D5
mA2p3

bsinh
mp2

b

. ~B8!

Combining this result with Eq.~B3!, we find that

I 15
2p2

b2 (
m52`

`
m

sinh
mp2

b

5
2p2

b2 F b

p2 12 (
m51

`
m

sinh
mp2

b
G .

~B9!

Now we expand Eq.~B9! for small b to give

I 15
2p2

b2 F b

p2 14e2p2/b~112e2p2/b1••• !G , ~B10!

which we can approximate to

I 15
2

b
1

8p2

b2 e2p2/b. ~B11!

Here we note that the first term is simply the integral limit
the sum. Also, for smallb, the second term becomes insi

FIG. 8. Path of integration.
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nificant compared to the first~for b51/A2, the second term
is 0.0048% of the first!. Thus, forb<1, the value of the sum
is well approximated by the integral.

In a similar manner we find that

I 25
4p2

3b2F b

p2 12 (
m51

`
m~b21m2p2!

b2sinh
mp2

b
G , ~B12!

which for smallb becomes

I 25
4

3b
1

16p2

3b2 S 11
p2

b2De2p2/b. ~B13!

Again, asb→0, this sum over alln takes the same value a
the integral over all space.

APPENDIX C: DISCRETE GREEN’S FUNCTION

Here we look for the Green’s function for the discre
operatorD2a2, whereDfn5fn111fn2122fn . Using

~D2a2!G~n;n8!5Gn11~n8!1Gn21~n8!2~21a2!Gn~n8!

5dn,n8, ~C1!

we look for solutionsGn}eln, for nÞn8. It is found that

el511
a2

2
6aA11

a2

4
. ~C2!

So sinceG(n;n8) must remain bounded asn→6`, for n
.n8,

G5G1el2n, ~C3!

and forn,n8,

G5G2el1n, ~C4!

where

el6511
a2

2
6aA11

a2

4
~C5!

and G1 ,G2 are both constants. Now Eqs.~C3! and ~C4!
must equate whenn5n8 and so

G1el2n85G2el1n8. ~C6!

Also, if we sum Eq.~C1! from n5n821 to n5n811 we
find that
A

G15
e2l2n8

el21e2l1222a2
. ~C7!

Thus, finally, we can say that forn.n8,

G5
el2~n2n8!

el21e2l1222a2
, ~C8!

and forn,n8,

G5
el1~n2n8!

el21e2l1222a2
. ~C9!

Since we are interested in small-a behavior, we expand Eqs
~C8! and ~C9! and find for alln and smalla

G~n;n8!52

S 11
a2

2
2aA11

a2

4 D un2n8u

2a1
a3

4

52
1

2a
1

un2n8u
2

1aS 1

16
2

~n2n8!2

4 D1O~a2!.

~C10!

APPENDIX D: SUMMATION MANIPULATION

In Sec. III the value ofg4 obtained by the Green’s func
tion method is given by Eq.~66!. This can be extended as

(
n52`

`

fn (
j 52`

`

un2 j uf j

52(
n51

`

fn (
j 52`

`

un2 j uf j1 (
j 52`

`

u j uf j

52F (
n51

`

fn (
j 52`

n21

~n2 j !f j2 (
n51

`

fn (
j 5n11

`

~n2 j !f j G
12I 452F I 313(

n51

`

nfn(
j 51

`

f j2 (
n51

`

nfn(
j 50

`

f j G
12I 452S I 312I 4(

n51

`

fnD 52~ I 32I 41I 1I 4!. ~D1!
s

@1# J. W. Cahn and J. E. Hilliard, J. Chem. Phys.28, 258 ~1958!.
@2# D. Bettinson and G. Rowlands, Phys. Rev. E54, 6102

~1996!.
@3# J. M. Hyde, A. P. Sutton, J. R. G. Harris, A. Cerezo, and

Gardiner, Modelling Simul. Mater. Sci. Eng.4, 33 ~1996!.
@4# A. Novick-Cohen and L. A. Segel, Physica D10, 277 ~1984!.
@5# H. E. Cook, D. de Fontaine, and J. E. Hilliard, Acta Metall.17,

765 ~1969!.
.

@6# Modeling the Dynamics of Biological Systems, edited by E.
Mosekilde and O. G. Mouritsen~Springer-Verlag, Berlin,
1995!.

@7# G. Rowlands, J. Phys. A27, 5313~1994!.
@8# M. A. Allen and G. Rowlands, J. Plasma Phys.50, 413~1993!.
@9# A. Shinozaki and Y. Oono, Phys. Rev. E47, 804 ~1993!.

@10# P. M. Morse and H. Feshbach,Methods of Theoretical Physic
~McGraw-Hill, New York, 1953!.


