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Transverse stability of the one-dimensional kink solution of the discrete Cahn-Hilliard equation

David Bettinson and George Rowlands
Department of Physics, University of Warwick, Coventry CV4 7AL, England
(Received 27 May 1997

We give an analysis of a discrete version of the Cahn-Hilliard equation, which admits a one-dimensional
kink solution. The stability of such a kink solution to perpendicular perturbations is analyzed using an
asymptotic matching method as used by Bettinson and Row[&igs. Rev. 54, 6102(1996] and a Green’s
function technique similar to that used by Shinozaki and Od?loys. Rev. E47, 804 (1993]. The kink is
found to be stable in both cases, but we find that the two methods do not agree, at first order in the growth rate,
for perturbations of wave number closeke 2p 7 (wherep is some integer Reasons for this disagreement
and why the method given by Bettinson and Rowlands leads to the correct result are given. We then use
equations derived in by Bettinson and Rowlands to compare stability results to those obtained for the continu-
ous version of the equation. We also analyze the stability to perturbations of wave number dtes@{o
+1)7 and finally, using a Padapproximant, we give an expression for the growth rate of perturbations of all
wavelengths. Our results quantify the difference between the continuum and discrete cases.
[S1063-651%98)02901-9

PACS numbdss): 64.60—i, 02.90+p, 02.30.Mv

I. INTRODUCTION and biology(see, for example[6] and references thergin
will lead to a regular spatial pattern formation. We conjec-
The continuous Cahn-Hilliard equati¢h] has been used ture that this pattern can be described by an array of kink-
extensively to describe pattern formation resulting from atype solutions. Thus in this paper, as a first step in a study of
phase transition. Such decomposition has been observed tine possible existence of kink-type solutions, we study their
two-component systems such as alloys and glasses, wheigear stability.
the phase transition is induced by rapidly quenching the sys- We first look for one-dimensional stationary solutions to
tem to below some critical temperature. For more physicaEq. (1) and thus require solutions to
background, derivation, and discussion g&e4]. In [3] it is
shown that to describe certain systems the wavelength of the
decomposition is at the nanometer scale. This is too small for
the continuum approximations of the Cahn-Hilliard equation
to apply and it is shown that this approach fails to describevhere Au,=u,,1+Uu,_;—2u,. Unfortunately, unlike the
the kinetics of the experimentally observed decompositionanalogous continuous problem, there are no general methods,
We use this as motivation for studying a discrete version osuch as phase plane analysis, to show the existence of peri-
the Cahn-Hilliard equation, which we write in the form odic or kinklike solutions. We use a potential that is known
to admit a stationary kink solutio(see[7]), namely

Au,—F'(u,) =0, 3

Jdu dF
= V2 5 Unm) = VU, (1)
T P @
F(u=1 5 u 2na( ud) |,

where u, ,, is the concentration parameter at the r)th
point of a two-dimensional lattice, and
) where « is some constant. This function has the advantage
VUy m=[Un+1m™* Un—1m~ 2Un m] that2 it2imposes the restriction=lu=— 1, whereas ifF = (1
2 _ —u)/4, a commonly used form of the potential in studies
O Unme 2 Unme1 72U ml, @ of the Cahn-Hilliard equation, there is r?o such restriction.
whereq is an anisotropy factor. We are interested in generallhis latter case is unphysical becausés the percentage
perturbations that are perpendicular to thelirection, but a  concentration of one of the two components and hgoge
simple rotation of the perpendicular axes will turn such a<1. It is shown in[7] that Eq.(3), along with the potential
problem into one that can be performed on a two-given by Eq.(4), admits a kink solution of the form
dimensional lattice. Equations such as Eq.arise naturally
in solid-state physics where the lattice is the atomic lattice.
In [5], Eq. (1) was derived and analyzed for the early-time
behavior described by linear perturbations to the homoge-
neous solution. The homogeneous solution was shown to Beherea=2 secRg ands is an arbitrary phase. This poten-
unstable. Of course nonlinear effects will introduce someial F is plotted in Fig. 1. The exact form d&f depends on
form of saturation mechanism to this instability and, by anal-the value ofa taken, but we note that the two minima are
ogy with many quite diverse systems in physics, chemistryalways atu= *tanhB==*1— «a/2.

u,=tanhBtank(nB+s), (5)

1063-651X/98/5{1)/16910)/$15.00 57 169 © 1998 The American Physical Society



170 DAVID BETTINSON AND GEORGE ROWLANDS 57

F % error

012 0:4 0:6 OjS ‘l B
FIG. 1. Form of the potentidf(u). FIG. 3. Error between the approximate solution and the numeri-
cally calculated solution to Ed6), for various values of3.

A. Discrete to continuous equation ) ) )
) . . ) B. Perturbing the kink solution
In this subsection we consider differences between the ) ] ] )
continuous and discrete kink. The continuous Cahn-Hilliard The remainder of this paper is devoted to asking whether
equation can be obtained from E€}) in the limit as the such kink solutions can be observed in practice. To be ob-
variation of u, , with n and m is slow compared to the servable it is necessary that small perturbations to the kink

underlying lattice spacing and is obtained by replacing thél€cay in time. To perturb a kink solution we writg,

operatorV2 in Eq. (2) by d%/9x2+q2d?%/ay?. To look for = un+du, we”* and substitute this into Eq1). Neglecting
stationary, one-dimensional solutions we must solve products ofdu,, ,, we obtain
2 dZF o
du — 2 —
(d_;) =2—a—2u2—aln(;(l—u2)). 6) y8Up m=V? _duz(un)—v2 SUp m - )

Making use of the fact that the coefficients &, ., in Eq.

We were unable to integrate this analytically, and so it had?) are independent ah we may write Uy m= ¢ne' ™ and
been solved numerically. The numerical solution is thenthen ¢, satisfies

compared to the analytical solution in the discrete case 5 —

[given by Eq.(5) with s=0 andn=x]. The maximum error —y¢n=(A—a)[A—a"—F"(uy)]¢n, (8

IS, found to be wherx=0, Wh',Ch IS cgﬁrmed ',f we 'conS|der with a=2gsin(/2) [in a truly three-dimensional problem we
Fig. 2. The maximum error is Wheqzo,_ which since we havea2=4qfsin2(k1/2)+4q§sin2(k2/2), whereq, andg, are
are concerned with the kink solution, is wher=0. The o anisotropy factors ank k, the wave numbers in the
maximum error in the approximate solution is plotted, fortransverse directios

various values o, in Fig. 3. For largeis, asx— ==, the Note that if we differentiate Eq(3) with respect to the
value of u(x) becomes closer ta-1 and the kink becomes phases we obtain

taller and steeper. This change in the shape of the stationary

kink solution coincides with an increase in the error between au_n

the approximatediscrete solution and the solution of Eq. L 7S =0, 9
(6). Thus, in conclusion, we see that the discrete and con-

tinuous forms are in good agreement for sufficiently sngall \\hare =A — Fu(u—n)_ Comparing this with Eq(8) shows

that a solution ¢,=du,/ds exists whena=0 (i.e., k
b =27p) and y=0, that is, a marginally stable solution. In
the continuous case, this marginally stable mode arises di-
rectly from the spatial invariance of the governing equation.

In the discrete case the time-independent solutigris ar-
bitrary up to a phase factor and the requirement of spatial
invariance is replaced by one of phase invariance. In the next
two sections we introduce two distinct methods to study the
solutions of Eq.(8) and in particular the variation of the
growth ratey with a®.

II. ASYMPTOTIC MATCHING METHOD

To solve the discrete linear equatidB) we extend a
FIG. 2. Phase plane contours. Solid line, the continuous casenethod, introduced if8] and discussed in detail by Bettin-
Eg. (6); dashed line, the approximate solution given by &j. son and Rowlandé&R) in Ref.[2]. The method is based on
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the fact that the correct asymptotic behavior of a solution to n

Eq. (8) must satisfy the form of this equation in the limit Pn+1=P0—712 ?j 0 (18
[n|—c0. In this limit the equation has constant coefficients 1=0

and so is easily solvable. Thus we begin by considering the

linear equation in the limit a;—o. To do this we must wherePy is an arbitrary constant. Similarly,

know the asymptotic behavior &". From Eq.(4), it can be n

shown that if we ignore all exponentially decaying terms, Yns1=Xn+ Po— 712 bi0
lim in(u_n)= —4+ §:4sinr?;3:r<. (10) no |
S « =xo+(1+DP- 13 3 ¢

Thus, in this same limit, Eq:8) becomes n
=Xot(N+1)Po= %2 (N+1=))djo, (19

[(A-a®)?~K(A-a®) +7],=0, (1D =
where ¢,=lim,, ...¢,. We assume solutions of the form which is true forn=0. Now we know thatP, 1= xn:1
¢$,=€"" and find that — Xn and so
1 P1= X1~ Xo.
(e M—2—a%) == (K= K’—4y). (12)
2
Po=Xxo—Xx-1- (20

For a and v small and for the positive square root in Eq.
(12), the asymptotic form of the eigenfunction decays on a
fast scale, that |35n~e‘2B“, while with the negative square
root we find a slow variation that can be represented as a

Slnce)(n is symmetric abouh=0, this last result give®,
—P;. Thus, from Eq(18) we see that

Y
polynomial inn. Thus, for the slow variation we have P0=71. (21)
=1—a+a? 5~ 27_:; +0(ad) (13)  Using this result and Eq19) we find that
n-1
and L na=xn=Cat 2 —712 (=)o (22
do=Ae™=Al1-na+a? Y_W +0(a%|, (19  forn=1 and
which is equivalent to Eq(A4) in [2]. In Eq. (14), A is an L do.1=x0=C1 (23

arbitrary normalization constant and we have takgn for n=0 (note that h | b
=ady, since, as we show below, this is the form for snaall or n (no € that we have rep aceg by cy). .

The basis of BR’s method is to remove any fast growing . In Appendix A ltis shown tha.t the operatbris symmet-
terms using a consistency condition and then to match the® "’_md from this follows a consu;:rency condltAlon_ that when
solution with the asymptotic form given by E€l4). To do  applied to Eq.(22) shows thatc; =c,y,, wherec, is some
this we consider the linear equati¢) for smalla, by ex- ~ constant. Inserting this result into E@2) gives

panding the variables ia, namely, n—1

-~ n _

— 2 N
$n=sech(nB) + ¢nsa+ dnza*+---. (15 Using the asymptotic form as given by Ed4), since¢, o
To first order ina, Eq. (8) is =0, then¢,; must at most be a constant. To satisfy this
’ condition we must have,;=0, leaving

ALén1=—v1bno0- (16)

Let L ¢, 1= x, and note that since,, o is symmetric about S )
n=0 andA is a symmetry preserving operator, thepis  Which implies thaté, ;=A;¢no, WhereA; is some con-
symmetric aboun=0. Thus we write Eq(16) as stant. _
To second order im, Eq. (8) becomes
- 71¢n,O:AXn:Xn+1+anl_ 2xn=Pn+1—Phn,

(17) A(Léno—dno)=—Y2¢n0, (26)

whereP,,.1=xn+1— Xxn. This equation is readily solved by and using the results obtained at first order we find that this
iteration to give simplifies to

L$n1=0, (25)
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—722 n—iejo (27

Ldno= 02+¢n0+

for n=1 and

L¢O,2: C2+ 1 (28)
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Now asn—o, we write Eq.(34) as

(A—K) ng=Cat 2= —732 n¢Jo+n2 idi0

y3l1
:C3+ ’)’3'4_ —NnN.

5 (38

for n=0. Using a similar argument to that used to deduce

v,=0 shows thaty,=0 and thus

Ldno=Cot dno

for all n. Applying the consistency condition to E®9), we
find thatc,= —1,/14, where

(29

|1:n=§;w ¢n,0!
|2:n=2x 4’%0’ (30)
and so Eq(29) becomes
2
L¢mf:¢np_ﬂ_ (3D

As n— it is found, using Eq(31), that (neglecting expo-
nentially decaying terms

— I,

¢n,z=K—|l. (32

which has the same form as EGQ) in [2]. To third order in
a, Eq.(8) is

A(L¢ns— dn1)=—7v30n0, (33
from which we find that
?’3| | -
L 3= Ca+ 1t —732 (n=¢jo (34
for n=0 and
Los=Cat Ay (39

for n=0. Note that in Eq(34) we have an absolute value of

n since, as we have already statgdor hereL ¢, 3— ¢, ) is

symmetric aboun=0. Applying the consistency condition

to this equation, we find that

[3—1,4)— Al

C3:73( 3= l4) 1 2, (36)

Iy

wherel,l, are given above and
o n—1
13=22, bno2 (N=])djo,

n=1 ]=0

4= 2, nbno. (37)

Thus the asymptotic form of the solution to third orderain
is given by
—  C3 ysly ysly
P~ Tk Tk ™ (39
which is equivalent to Eq(25) in [2]. If we combine this
result with that given by Eq.32) we can write

12
bl t B lnato(a?).
21,

(40)
A comparison of this result with that given by E(l4)
shows that

21,

V3=~ 7 (41)
1

which is equivalent to Eq(27) in [2]. For small g, it is
shown in Appendix B that these sums are well approximated
by their integrals, in which casg;= —28/3. We show later,
in this limit, how the value ofy; is the same for both the
discrete and continuous cases.

To fourth order ina, Eqg. (8) is

I
A(Lpna— ¢n2)—_ —(vatA1Y3) bno- (42

From this it can be shown that the equivalent result to Eq.
(21) to first order is

l, 1
POZE"‘ 5(7’4+A1’)’3), (43
so Eq.(42) becomes
n|
Ldna— édn 2= 7( YatArys)+Cy
n-1 |
. 2
—(YatArys) 2 (n_J)QSj,O_TnZy
i=0 1
(44)
where we have used the relationship
E (j+1)= ( +1)(n+1) (45)

Now asn—oo, Eq. (44) becomes
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— . 1 < P 5 . . . —
(A_K)¢n,4:c4+(7’4+A173)(§_2 ¢j,0)n_ﬁn2 ! : : ¢
=0 1
~ Il |2 2 -0.5 N
=C4—(yatAry3)5n— 5N (46) RN
2" o, N
1 b \\\\
and thus ‘\\ - T
¢T :_E_FI_]‘( +A )n_|_ |_2n2 (47) \\\\*\
AT TR T2k TRy gk e

FIG. 4. Growth rate variable; as a function of3. Solid line,

which is equivalent to E30) in [2]. We now combine Egs. continuous equatiofbl); short-dashed line, discrete equati@r).

(32), (36), (39), (41), and(47) to give

o
yal3n  2I3n 21,0 21,40 n2> ) Zf\sm uo( Vl_E_uo)
l:

dncl—an+a? I, TR + T . N TTON) duy,
+0(ad), (48) —
|2—J\ Mduo,
and comparing this to Eq14) we find that
a n
a1, 1, i 1 =P Kug— \/1—§F (up)
MZ_W[I —l4+14ly ZK} (49 |3:m o Fluy) duo.

(52

which is equivalent to Eq(36) in [2]. Thus we can now These integrals, along with the results from the discrete
write analysis, are evaluated numerically for a rangegefand
plotted in Fig. 4, and those lines labeled withaim Fig. 5.
These figures are the main results of our work as they show

y=- 2|2a3— 4|42 lg— 1+ 140 ,— 2 a*+0(a’ the similarities and differences between the solution of the
'1 Iy 2K continuous and discrete versions of the Cahn-Hilliard equa-
(50 tion.
The expressions given foy; in the discrete regimgEq.
for small a. (41)] and that in the continuous ca$Eg. (51)] are easily

We can now compare the results obtained for the discret@nalyzed for3—. It can be shown that

case to those obtained for the continuous Cahn-Hilliard i i _

equation. The difference between the discrete and continuous ﬁ'inxl 1_6'1' 2=1 (53
equations, both given by Edl), is purely within the opera-
tor V2. For the discrete equation? is as defined in Eq2)
of the present paper and for the continuous case it is taken t = : : : — B
be the Laplacian operator. For the continuous case we us
Eq. (27) and Eq.(36) of [2] where the stability is analyzed —°'f
for a general potential. Using these equations with the poten_, ,{
tial F given by Eqg.(4) anda=k, it is shown that

i
V3= 2 )

- -0.5F

(A al? I,l5
— + ,
(2-a)? 8(2-a)p (2-a) FIG. 5. Growth rate variabley, against8. a, result obtained
using the asymptotic matching methda;result obtained using the
. Green’s-function method. Solid line, continuous equation; dashed
where thel;’s are definite integrals given by line, discrete equation.
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and so in the discrete case Using this, Eq.(58) becomes
o a2y = . 'l
5 (L=a%n=35 2 dw—35 2 In-n'é,
For the continuous case it can be shown that - )
E 1 (n—n’') 60
lim T,=— (55 R A
Im 2= —
e 2

We perform a smal& expansion upon the variables, as in
Eqg. (15), and to zeroth order ia, Eq. (60) becomes

and so
m 23 oo~ Ldne=0 (61)
lim y3=— ——==-1.11. (56) 2 4 n’.0 n.0
B*}OO 2\/5 n=-e
These asymptotic forms are shown as long-dashed lines i%nd S071=0. Tofirst order ina, Eq. (60) becomes
Fig. 4. w
This behavior is somewhat different from the time evolu- % > dnr0=Ln1. (62)
n'=-—ow

tion of the unstable homogeneous solutﬁlzo. Equation -

(72) still dezscribes the time evolution, but now With ging the consistency condition as developed in Appendix
d’F(up)/du?=—2tanks, from which it is simple to show A, we find thaty,=0, which implies that Eq(62) is now

that L ¢, =0, from which we findg,, 1=A; ¢, . To second or-
y=a%(2tanftg—a?), (57 der ina, Eq. (60) becomes

where a=2sink/2) for the discrete equation arai=k for s > b =Ly (63)

the continuous equation. Thus, for smklthe relationship 2,2, . ne rno

betweeny and the parameteg is the same for both the ) - )

discrete and continuous equations. This is different from thénd now the consistency condition gives

decay rates of smak-perturbations to the kink solution as ol

shown in Fig. 4. There we see that the decay rates differ from Ya=— _22 (64)
the discrete and continuous versions of the equation. We I

suggest that, for finite values @, this decay rate difference L ) . ,
is due the kink solution to the discrete equation being differ Which is equivalent to Eq(41) found using the asymptotic

ent to the kink solution in the continuous case, whereas thE'atching method. To third order i, Eq. (60) becomes

homogeneous solution is the same in both cases. 1 o
V3
E(A173+ Ya)l1— 23 > In— N'[¢n 0=Lnz— ¢dn1-
Ill. GREEN'S-FUNCTION METHOD n'=—c 65
65

In Sec. Il a method was developed to solve the eigenvalue
equation(8) and givey as a power series ia. It would be In this case the consistency condition gives
advantageous if a simpler method were available. The . .
Green’s-function method, introduced by Shinozaki and Oono 21,
in [9] to study the continuous case, is in fact simpler than the LT E $no 2
method of BR. In this section we apply this method to the

discrete case and show that it gives an identical valuedor  and using Eq(D1) in Appendix D we see that
but as in the continuous case, it gives an incorrect value for

|n_n,|¢n’,0 (66)

1 h=—x n=-—ow

Ya. 2
As in[9], we look for solutions to Eq:8) for smalla (i.e., YaT |_4('3_ I+ 1114). (67)
k~2p). Formally, we introduce the Green’s function for !
A—a® and rewrite Eq(8) in the form A comparison of this equation to that given by E49) in
- Sec. Il shows that here the potentk) through the terms
(L—a%) = —y 2 G(n:n') . (59) involving K, has played no part in the value ¢f. In[2], the

continuous linear Cahn-Hilliard equation with a different po-
tential was studied. The asymptotic method gave a value
In Appendix C we show that the Green’s function far  y,=—11/18, whereas the Green's-function method gave

n'=—ow

—a? can, for smalla, be written in the form v,= —2/3. The 1/18 difference was again simply the contri-
’ 'y bution from the potentialF. Thus we conclude that the
G(n:n')=— i+ In—n’| a(i— (n—n") >+O(a2) Green's-function method gives the correct form fay, but
' 2a 2 16 4 ' misses a contribution te, that depends explicitly on the

(59 detailed form of the potential.
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We can now consider Figs. 4 and 5, where all results are * ===
shown. Forvys, since both methods give the same answer, *-5f /
there are only two distinct curvgene for each of the con-
tinuous and discrete cageswhereas fory, the Green’'s-
function method always overestimates the decay rate and s
there are four different curves. Note that for bgthand y,,
as3—0, the difference between the continuous and discrete,
answers tends to zero.

We have shown that the Green’s function method is a .|
quicker way to obtain stability resultsy; and y, are ob-
tained one order earlier than when using the asymptotic .|
method. However, there is disagreement between the value
of y, given by each method. This we have shown is due to
the potential affecting the asymptotic result, but not the
Green’s-function result at orde*. FIG. 6. Percentage error in the analytically calculated growth

In [8] it is shown that to determine it is not sufficient rates for,8_= 0.1 and various_ values @f. Lo_ng-_dashed liney cql-
just to remove exponentially secular terms as this leads to thgH!ated using the asymptotic method; solid linecalculated using
wrong asymptotic form for the eigenfunction. It was shownth€ CGreen's-function  method; ~ short-dashed line, - 3g0(
that simply removing exponentially secular terms leads to Yad)alys.
the correct answer to lowest order, but breaks down at higher . . -
orders. Using the consistency condition, as in the Green'ss'or: We Now varyy ar!dc in order tq determine the mini-
function approach, actually removes exponentially seculaf!um Of_ this error function and thus find
terms and so will only give the correct value pfto lowest In Fig. 6 we show, fprﬂzo.l, the pgrcentage error
order(i.e., y3). Thus we conclude that the method of using al00(y— va)/y, Where y, is the value derived using our
Green'’s function together with a consistency condition to2Symptotic methodgiven by Eq.(50)], and the percgntage
determiney at anything other than lowest order is incorrect, €"°" 1006 7o)/ v, whereyy is the value derived using the

from which we conclude that the results given by E&j7) glreeT’s—function rr|1ethoc[gir:/en bby Eqs.(f64€léand (67).]"
above and3.10 of [9] are wrong. early, asa gets larger, the absence of thé term wi

influence our analytical resultbut for small a, we see that
va IS much closer to the numerically calculated valueyof
IV. NUMERICAL SOLUTION OF THE DISCRETE The short-dashed line is the percentage errotpf calcu-

EQUATION lated for smalla, if we assume thaty=1y,, namely,

In this section we present results from numerical calcula100(Yg4— va4)@/vs. Clearly the two error curves foyg are
tions of solutions to the discrete linear equation, namely, Eqin agreement, vindicating our assumption that y, for
(8). These are performed using asymptotic knowledge of thémall a.
solution to Eq.(11). It can be shown that the general
bounded solutionp,, is such that V. LARGE-a ANALYSIS

1.25F

1t

75 F

n
+cC

b_+_ E\/ﬁ two whenk=m(1+2p), with p being any integer. Unlike

2 2'77 the continuum case wheeeis justk and can take arbitrarily

(68 large values, hera is bounded. However, we assume a
largea expansion in analogy with the results given[R].

where Taking the dominant terms of E¢B), we find that

- 7¢n:a4¢nv (70

which implies that to leading order= —a*. As in Eqs.(44)
and (45) of [2], we now scale the variables ind,/thus

lim = o

n—oo

n Now sincea= 2sink/2), then|a| has a maximum value of
= 4} |

b.=

2+a2+;(Ki\/K2—4y)} (69

with the constanK given by Eq.(10). The relative ampli-
tude of the two modes of decay i, is unknown and the

constantc reflects this. Thus, for each value af at a par- $n=bnat 5¢nvb+ 37¢n,c+ T

ticular value ofB, we have two unknown quantitiesandc.

A particular solution is found by choosingandc, using Eq. y=—a*+ yas+ y,a+ - - -. (71)
(68) as the solution for large (we find thatn=70 is suffi-

cient, and then iterating backward using H8). To ordera® we find thaty,=0. To ordera® we find that

We now note that in the analysis of E() we have
considered a symmetric eigenfunction. We develop a func- 1 — B
tion to measure the symmetry of our numerically calculated A- E[F (Un)+ 7] {¢na=0 (72
eigenfunction. The absolute percentage error betwgegand
¢_, is found for 1=n<30, and these values are thenis the equation to be solved. In principle this can be done to
summed. The final answer is used as a measure of the totgive vy, , leaving
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~¥5 In this paper the transverse stability of a discrete equation
is studied and it is shown that the discrete Cahn-Hilliard
equation is, as with its continuous counterpart, stable to
transverse perturbations. As the paramgies0 the decay
rate of perturbations decreases and the discrete answer con-
verges to that obtained in the continuous case. For fiiite
the continuous case underestimates this decay rate. We have
analyzed only one particular potential, but as founddh
we expect the stability results to differ only quantitatively for
different potentials. Importantly, the form for given by Eq.
(50) is applicable for all potentials that admit kink solutions,
x with the detailed form of the kink only needed to evaluate
) the sumd . To lowest order, it is found that taller, steeper
FIG. 7. Padeapproximation to the growth rate given in E@7). kink solutions are more stable.
4 5 In analyzing this equation, we have found important dis-
y=matypdt . (73 crepancies in a commonly used method for determining the
stability of fourth-order equations. The Green’s-function
method, as we have called it, appears to take no account of
the particular potential and, as we have shown, gives an in-
correct value to the first order correction to the decay rate for
small a.

In [3] it was pointed out that the derivation of the discrete
Cahn-Hilliard equation depends on a gradient expansion of
the free energy. The approximation used rejects all high-

Since we now have approximations to the growth rate foorder terms, thus limiting the validity of the equation to rela-
small and largea, we use a Padapproximation for all (as  tively smooth solutions. 3] it is shown numerically, for
done in[2]). We assume the form of the growth rate to bethree different models of phase separatione of which is
given by the continuous Cahn-Hilliard equatiprthat the system un-
der consideration always evolved to the same final state but
Yo= , (74) that the time scales of evolution were model dependent.

P 1+bsa Similarly, we have shown that differences between the dis-

. crete and continuous Cahn-Hilliard equations are only quan-
where theb; are constants to be determined by our small- d ya

and laraea aporoximations to the arowth rate. For small titative, namely, the kink solution is stable but the decay rate
gea app 9 ) does differ between the two cases. This means that the total
we can write Eq(74) as

time for the evolution of an unstable homogeneous initial

T 2n 3 4n

Thus, to lowest order, for large, y=—a*, and so ifa=2,

to lowest ordery= —16. Also, sincea is periodic ink we
find that the growth rate of the kink solution is periodic,
being marginally stable whek=2=p (p is some integer
and stable elsewhere.

VI. PADE APPROXIMATION TO THE GROWTH RATE

_ boa®(1+bja+bya®)

yp="boa’+by(b; —bz)a*+0(a%). (75  state to akink or array of kinks differs depending on whether
one uses the discrete or continuum model. The results given
Similarly, for largea we can write Eq(74) as in this paper can be used to give estimates of the differences
bb b b in this time.
— 02 4, 70 2.3 2
=——a"+ —| b;——|a*+0(a%). (76)
Yp b3 b3 1 b3 (
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3.2
a’vys
Yoy Tyl @7
[v3—(1+vys)a] APPENDIX A: SYMMETRIC OPERATOR
wherea=2|sin(k/2)|. This form fory, is plotted in Fig. 7 as Here we show that=A — F”(u_n) is a symmetric opera-
a function ofk. tor. Consider the equation
VIl. CONCLUSIONS
There are three main points that arise from this paper. The | = 2 ol by, (A1)

first is related to the transverse stability of the discrete Cahn- n=-—o

Hilliard equation, the second relates to a flaw found when

using a consistency condition, and finally we compare our

findings with those of other authors who have considered thehere ¢, is an arbitrary function that tends to zero as
time evolution of discrete equations. n— +co, Then
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1= 2 gnlA=F"(un)]éy

©

= 2 il dneat dn1= 260 F'(Un) 6]
= 2 bol Yn 17 Pn-1— 24— F"(Ur) ]
=2 ol v, (A2)
so that
2 z//nLd)n:ni_w Lt (A3)

for arbitrary #,,, which proves that. is symmetric. Using
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Im(t)

w2 F

Re(t)

FIG. 8. Path of integration.

Note that the function cogcosift has poles whet=i (1
+2p)/2,wherep=0,1,2 ... . Tosolve the integral we use
complex integration. The contour chosen is that in Fig. 8. By
Cauchy’s theorem

this result, we can obtain a consistency condition that

bounded solutions exist for any equation of the form

Lpn=S,. (Ad)

First multiply by ¢, o and sum over alh. Now use the result
thatL is symmetricL ¢, =0, and the consistency condition

2 ¢no $H=0 (AS)

follows.

APPENDIX B: EVALUATION OF CERTAIN INFINITE
SUMMATIONS

The original seried; andl, [Eqg. (30)] give convergent

%cosﬂdt 27>, (residues. (B5)

coslHt

The residue of the function ceicosHt about in/2 is
ixsinh(mx/2). Using Eq.(B5), we find that

© CcOXt » cosKt o aX
J ———dt— coshrrxf dt= 2m(|xsmh—),

results forB— . Here we find a series representation appro-

priate for B—0. For this we use the Poisson sum formula

(see[10], p. 466, which states that

” 2mar
> f (an>——m_2 ( ) (BL)
whereF is the Fourier transform of,
F(k)=— f(x)e'k"dx (B2)
RN — 00

Now |,==7___ seck(nB) and so using Eq(B1) we can
say

27 & 2m
where
1 » cost
F(x)= (B4)

o) costet

..costit _.costt 2
(B6)
so that
foc coxt ~— mXx B7
_.cosltt = X (B7)
sinh—-
2
and thus
2mar . m 27 B8
. omr (B8)
Bsinh——
B
Combining this result with Eq(B3), we find that
| _2772 ” m 22 Ew:
N 77_ 1 '
sinh—— smh—
B B
(B9)
Now we expand Eq(B9) for small 8 to give
22
I1:—2Ez+4e’”2"8(1+2e”’2’5+--~), (B10)
B |
which we can approximate to
2 877 2
li=—+—5e TP, B11
1=t 2 (B1D

Here we note that the first term is simply the integral limit of
the sum. Also, for smalB, the second term becomes insig-
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nificant compared to the firgfor 8=1/.2, the second term
is 0.0048% of the firgt Thus, for@=<1, the value of the sum
is well approximated by the integral.

In a similar manner we find that

A 2 2+m2 2
) B2 IB—ﬂ_z) . 612
B2sinh——
B
which for small3 becomes
. +16W2(1+ il (B13)
=+ = —|e TP,
2 3:8 3[32 BZ

Again, asB—0, this sum over alh takes the same value as
the integral over all space.

APPENDIX C: DISCRETE GREEN’'S FUNCTION

Here we Iook for the Green's function for the discrete

operatorA —a?, whereA ¢,= ¢, 1+ dn_1— 2, . Using
(A=a*)G(n;n")=Gp,1(n")+Gy_1(n") = (2+a8%)Gy(n’)
:5n’nr, (Cl)

we look for solutionsG,<e*", for n#n’. It is found that

et=1+ a2+a\/1+ &
T2 4°

So sinceG(n;n’) must remain bounded as— *«, for n
>n’',

(C2

G=G,e'", (C3
and forn<n’,
G=G_e+ (CH
where
a? a’
e*r=1+7ta 1+Z (CH

and G, ,G_ are both constants. Now Eq&C3) and (C4)
must equate when=n' and so
G et"=G_eM". (C6)

Also, if we sum Eq.(C1 fromn=n'—1 ton=n'+1 we
find that

DAVID BETTINSON AND GEORGE ROWLANDS

e—)\,n’
G+:e"*Jre‘M—Z—az' (€
Thus, finally, we can say that for>n’,
e)\,(n—n’)
= , (Cy
et-+e M—2-2a2
and forn<n’,
e)‘+<n_n,)
(C9

et-+e r—2-a%

Since we are interested in smallbehavior, we expand Egs.
(C8) and(C9) and find for alln and smalla

a2 22\ In-n’l
, 1+?—a l+z
G(n;n")=— 23
2a+z
1 |n—n'| 1 (n—n")? )
"2t 2 (E_ 4| ToE)
(C10

APPENDIX D: SUMMATION MANIPULATION

In Sec. Il the value ofy, obtained by the Green'’s func-
tion method is given by Eq66). This can be extended as

2, ¢ 2 In=ile,

=22, do 2 In-il+ 2 lil4,
{2 2 (n=)¢;— 2«%} —j>¢,}

+2|4:2

|3+3n§1 n¢nj§1 ¢j—n§1 n¢nj20 ¢>J}

|3+2|4nz1 ¢n):2(|3—|4+|1|4). (D1)

+21,=2
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